Heat Shock Protein 70 Prevents Hyperoxia-Induced Disruption of Lung Endothelial Barrier via Caspase-Dependent and AIF-Dependent Pathways
نویسندگان
چکیده
Exposure of pulmonary artery endothelial cells (PAECs) to hyperoxia results in a compromise in endothelial monolayer integrity, an increase in caspase-3 activity, and nuclear translocation of apoptosis-inducing factor (AIF), a marker of caspase-independent apoptosis. In an endeavor to identify proteins involved in hyperoxic endothelial injury, we found that the protein expression of heat-shock protein 70 (Hsp70) was increased in hyperoxic PAECs. The hyperoxia-induced Hsp70 protein expression is from hspA1B gene. Neither inhibition nor overexpression of Hsp70 affected the first phase barrier disruption of endothelial monolayer. Nevertheless, inhibition of Hsp70 by using the Hsp70 inhibitor KNK437 or knock down Hsp70 using siRNA exaggerated and overexpression of Hsp70 prevented the second phase disruption of lung endothelial integrity. Moreover, inhibition of Hsp70 exacerbated and overexpression of Hsp70 prevented hyperoxia-induced apoptosis, caspase-3 activation, and increase in nuclear AIF protein level in PAECs. Furthermore, we found that Hsp70 interacted with AIF in the cytosol in hyperoxic PAECs. Inhibition of Hsp70/AIF association by KNK437 correlated with increased nuclear AIF level and apoptosis in KNK437-treated PAECs. Finally, the ROS scavenger NAC prevented the hyperoxia-induced increase in Hsp70 expression and reduced the interaction of Hsp70 with AIF in hyperoxic PAECs. Together, these data indicate that increased expression of Hsp70 plays a protective role against hyperoxia-induced lung endothelial barrier disruption through caspase-dependent and AIF-dependent apoptotic pathways. Association of Hsp70 with AIF prevents AIF nuclear translocation, contributing to the protective effect of Hsp70 on hyperoxia-induced endothelial apoptosis. The hyperoxia-induced increase in Hsp70 expression and Hsp70/AIF interaction is contributed to ROS formation.
منابع مشابه
Trauma-hemorrhagic shock-induced pulmonary epithelial and endothelial cell injury utilizes different programmed cell death signaling pathways.
Intestinal ischemia after trauma-hemorrhagic shock (T/HS) results in gut barrier dysfunction and the production/release of biologically active and tissue injurious factors in the mesenteric lymph, which, in turn, causes acute lung injury and a systemic inflammatory state. Since T/HS-induced lung injury is associated with pulmonary endothelial and epithelial cell programmed cell death (PCD) and ...
متن کاملTransforming growth factor-beta1-induced endothelial barrier dysfunction involves Smad2-dependent p38 activation and subsequent RhoA activation.
Lung edema due to increased vascular permeability is a hallmark of acute lung injury and acute respiratory distress syndrome. Both p38 and RhoA signaling events are involved in transforming growth factor (TGF)-beta1-increased endothelial permeability; however, the mechanism by which these pathways cooperate is not clear. In this study, we hypothesized that TGF-beta1-induced changes in endotheli...
متن کاملHeat shock protein 70 neutralization exerts potent antitumor effects in animal models of colon cancer and melanoma.
When overexpressed, the stress protein heat shock protein 70 (HSP70) increases the oncogenic potential of cancer cells in rodent models. HSP70 also prevents apoptosis, thereby increasing the survival of cells exposed to a wide range of otherwise lethal stimuli. These protective functions of HSP70 involve its interaction with and neutralization of the adaptor molecule apoptotic protease activati...
متن کاملProtective Effect of Trehalose Against H2O2-induced Cytotoxicity and Oxidative Stress in PC-12 Cell Line and the Role of Heat Shock Protein-27
Background: Oxidative stress has been shown to be an important factor, which plays a significant role in the pathogenesis of neurodegenerative disorders. Heat Shock Protein-27 (HSP-27) has been implicated in antioxidant responses against oxidative stress. Trehalose is a natural disaccharide widely used in a variety of food products with demonstrated protective effects against several neurodegen...
متن کاملEpidermal growth factor-like domain 7 protects endothelial cells from hyperoxia-induced cell death.
Hyperoxia is one of the major contributors to the development of bronchopulmonary dysplasia (BPD), a chronic lung disease in premature infants. Emerging evidence suggests that the arrested lung development of BPD is associated with pulmonary endothelial cell death and vascular dysfunction resulting from hyperoxia-induced lung injury. A better understanding of the mechanism of hyperoxia-induced ...
متن کامل